

Aire d'une sphère et volume d'une boule

Exercices 3^{ème} 10-1

1) Soit une sphère de centre O et de rayon 8 cm.

A, B et C sont trois points de l'espace tels que :

OA = 12 cm, OB = 6 cm et OC = 8 cm.

Vrai ou Faux?

Propositions	<mark>Vrai ou Faux ?</mark>
Le point A est extérieur à la boule.	
Le point B appartient à la boule.	
Le point B appartient à la sphère.	
Le point C appartient à la sphère	

Calcul	le une valeur approchée arrondie à l'unité de son	volume.
3) <mark>Cal</mark>	l <mark>cule le volume, arrondi au dixième de cm³, des o</mark>	<mark>bjets suivants :</mark>
a. Un	cochonnet de pétanque de diamètre 25mm.	
<mark>b. Une</mark>	e balle de golf de diamètre 42,7 mm.	

	•••••••••••••••••••••••••••••••••••••••
d. Un	ballon de handball de rayon 19 cm.
	<u> </u>
4) 0	
4) <mark>Qu</mark>	el est le volume d'Hélium contenu dans un dirigeable de forme
	el est le volume d'Hélium contenu dans un dirigeable de forme nérique et de diamètre 5m.

a. Calcu	er le volume d	du ballon arr	ondi au cm³.		
h À cha	que expiration	n, on souffle	500 cm³ d'ai	<mark>r dans le ballo</mark> i	n.
		i, on ocamo	ooo on aa	dano io bano	<mark>' • •</mark>
					-
		-t-on souffle	<mark>r pour le gon</mark>	fler au maximi	<mark>um ?</mark>
		-t-on souffle	<mark>r pour le gon</mark>	<mark>fler au maxim</mark> ı	<mark>um ?</mark>
		-t-on souffle	<mark>r pour le gon</mark>	fler au maximu	um ?
		-t-on souffle	<mark>r pour le gon</mark>	fler au maximu	um ?
		t-t-on souffle	<mark>r pour le gon</mark>	fler au maximu	um ?
		-t-on souffle	r pour le gon	fler au maximu	um ?
		-t-on souffle	r pour le gon	fler au maximu	um ?
		-t-on souffle	r pour le gon	fler au maximu	um ?
		-t-on souffle	r pour le gon	fler au maximu	um ?
		t-t-on souffle	r pour le gon	fler au maximu	um ?

6) Pour amortir les chocs contre les autres embarcations ou le quai, les			
péniches sont équipées de « boudins » de protection.			
Calcule le volume, à l'unité près, en cm³, du « boudin » de protection ci-			
dessous, puis, arrondis au centième. AC = 16 cm A AC = 16 cm			
Rappel: Volume d'un cylindre de révolution :			
$V = \pi R^2 \times h$			
où h désigne la hauteur du cylindre et R le rayon de la base.			

7) La géode, située à la Cité des Sciences de la Villette à Paris, est une structure sphérique.

La salle de projection, située à l'intérieur de la géode, est une demisphère de 26 m de diamètre.

Calcule le volume de cette salle. Donne la réponse en m³ arrondie à l'unité.

Aire d'une sphère et volume d'une boule-correction

Exercices 3^{ème} 10-1

1) Soit une sphère de centre O et de rayon 8 cm.

A, B et C sont trois points de l'espace tels que :

OA = 12 cm, OB = 6 cm et OC = 8 cm.

Vrai ou Faux?

Phrases Phrases	Vrai ou Faux ?
Le point A est extérieur à la boule.	VRAI
Le point B appartient à la boule.	VRAI
Le point B appartient à la sphère.	FAUX
Le point C appartient à la sphère	VRAI

2) Une boule a pour rayon 4cm.

Calcule une valeur approchée arrondie à l'unité de son volume.

On rappelle que:

$$V_{sph\`ere} = \frac{4}{3}\pi R^3$$

$$V = \frac{4}{3} \times 3,14 \times 4^3$$

$$V = \frac{4}{3} \times 3,14 \times 64$$

$$V = 268 \text{ cm}^3$$

3) Calcule le volume, arrondi à l'unité, des objets suivants :

a. Un cochonnet de pétanque de diamètre 25mm.

$$V_{sph\`ere} = \frac{4}{3}\pi R^3$$

$$R = \frac{d}{2} = \frac{25}{2} = 12,5$$

$$V = \frac{4}{3} \times 3,14 \times 12,5^3$$

$$V = \frac{4}{3} \times 3,14 \times 1953,125$$

$$V = 8177 \text{ mm}^3$$

b. Une balle de golf de diamètre 42,7 mm

$$V_{sph\`ere} = \frac{4}{3}\pi R^3$$

Il faut que tu penses à travailler sur le rayon et pas sur le diamètre.

$$R = \frac{d}{2} = \frac{42,7}{2} = 21,35$$

$$V = \frac{4}{3} \times 3,14 \times 21,35^3$$

$$V = \frac{4}{3} \times 3,14 \times 9731,81$$

$$V = 40744 \text{ mm}^3$$

c. Une balle de tennis de rayon 3,2 cm.

$$V_{sph\`ere} = \frac{4}{3}\pi R^3$$

$$V = \frac{4}{3} \times 3,14 \times 3,2^3$$

$$V = \frac{4}{3} \times 3,14 \times 32,768$$

$$V = 1377 \text{ cm}^3$$

d. Un ballon de handball de rayon 19 cm.

$$V_{sph\`ere} = \frac{4}{3}\pi R^3$$

$$V = \frac{4}{3} \times 3,14 \times 19^3$$

$$V = \frac{4}{3} \times 3,14 \times 6859$$

$$V = 28716 \text{ cm}^3$$

4) Quel est le volume d'Hélium contenu dans un dirigeable de forme sphérique et de diamètre 5m.

$$V_{sph\`ere} = \frac{4}{3}\pi R^3$$

Il faut que tu penses à travailler sur le rayon et pas sur le diamètre.

$$R = \frac{d}{2} = \frac{5}{2} = 2,5$$

$$V = \frac{4}{3} \times 3,14 \times 2,5^3$$

$$V = \frac{4}{3} \times 3,14 \times 15,625$$

$$V = 65 \text{ m}^3$$

5) On dispose d'un ballon gonflable en forme de sphère de diamètre 30 cm.

a. Calculer le volume du ballon arrondi au cm³.

$$V_{sph\`ere} = \frac{4}{3}\pi R^3$$

$$R = \frac{d}{2} = \frac{30}{2} = 15$$

$$V = \frac{4}{3} \times 3,14 \times 15^3$$

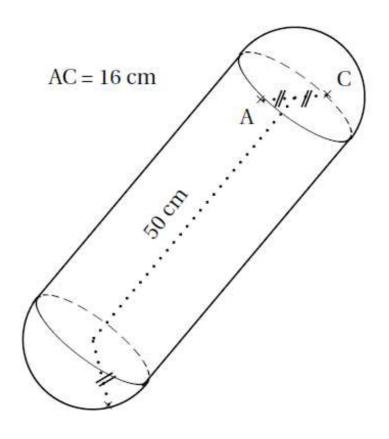
$$V = \frac{4}{3} \times 3,14 \times 3375$$

$$V = 14130 \text{ cm}^3$$

b. À chaque expiration, on souffle 500 cm³ d'air dans le ballon.

Combien de fois devra-t-on souffler pour le gonfler au maximum ?

Nombre d'expirations


$$N = 14130 \div 500$$

$$N = 28,26$$

On devra souffler 29 fois cependant la dernière expiration ne sera pas complète.

6) Pour amortir les chocs contre les autres embarcations ou le quai, les péniches sont équipées de « boudins » de protection.

Calcule le volume, à l'unité près, en cm³, du « boudin » de protection cidessous, puis, arrondis au centième.

Rappel:

Volume d'un cylindre de révolution :

$$V = \pi R^2 \times h$$

Le boudin est constitué d'un cylindre et de deux demi-sphères.

Calculer son volume revient à calculer et à additionner le volume du cylindre et le volume d'une sphère.

Volume du cylindre	Volume de la sphère	
$V_c = \pi R^2 \times h$ $V_c = 3.14 \times 8^2 \times 50$ $V_c = 10048 \text{ cm}^3$	$V_s = \frac{4}{3} \times 3,14 \times 8^3$ $V_s = \frac{4}{3} \times 3,14 \times 512$ $V_s = 2144 \text{ cm}^3$	
Volume total		
$V_t = V_c + V_s$		
$V_t = 10048 + 2144$		
$V_t =$	12192 cm ³	

7) La géode, située à la Cité des Sciences de la Villette à Paris, est une structure sphérique.

La salle de projection, située à l'intérieur de la géode, est une demisphère de 26 m de diamètre.

Calcule le volume de cette salle. Donne la réponse en m³ arrondie à l'unité.

$$V_{sph\`ere} = \frac{4}{3}\pi R^3$$

$$R = \frac{d}{2} = \frac{26}{2} = 13$$

$$V = \frac{4}{3} \times 3,14 \times 13^3$$

$$V = \frac{4}{3} \times 3,14 \times 2197$$

$$V = 9198 \, m^3$$